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Soil salinity and salt tolerance of plants 

Global scarcity of water resources, ecological pollution and enlarged salinization of soil and water became a 

noticeable problem at the beginning of the 21st century. Soil pollution caused by industrial and agricultural 

activities is an environmental problem that poses serious threats to human health and ecosystems. This review 

provides, firstly soil salinity characteristics and salinity indicators. Secondly, we focused on saline areas in 

the world and causes of soil salinization. Thirdly, mapping and monitoring of soil salinity areas and im-

provement measures for saline soil tolerance. Fourthly, effect of salinity stress on plant and plant salinity re-

sponse was discussed. This review is intended to provide a comprehensive overview on salinization of soil 

and presenting fundamental information for future research studies. 
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Soil salinity characteristics and salinity indicator 

Soil is a vital resource for feeding the growing global population. Excess soil salinity poses a significant 

threat to agricultural production and environmental health [1]. Soil salinity refers to the amount of dissolved 

minerals and salts in water. NaCl is considered the predominant salt which is the main cause of soil salini-

ty [2], because, during irrigation with water that mainly has calcium (Ca2+), magnesium (Mg2+), and sodium 

(Na+), so when the water evaporates, Ca2+ and Mg2+ directly precipitate into carbonates, leaving Na+ as a 

dominant anion in the soil that inhibits nutrition activities and creates extreme ratios of Na+/Ca2+ or Na+/K+ 

in soil [3, 4]. 

Some of the traditional method employed to check salinity levels includes [5] electrical conductivi-

ty (EC), total dissolved solids (TDS), and sodium adsorption ratio (SAR) [6, 7]. However, these measure-

ments are based on visual observation which only provides qualitative information about crops. Electric con-

ductivity (EC) is among the most important laboratory methods that are used for the classification of soil sa-

linity [8]. Based on US Salinity Staff Laboratory reports, the distinguished characteristic of saline soils has 

EC > 4 dS/mat 25 ̊C, ESP < 15, and pH of the soil reaction < 8.5 [9, 10] (Table 1). Conventional methods of 

in situ soil sample collection and analysis for soil salinity are labor-intensive, time-consuming, and costly 

[11, 12]. Remote sensing data and techniques that detect soil salinity more efficiently and economically with 

the use of rapid tools and techniques allow the mapping of soil salinity. The electric conductivity analysis of 

saturated soil paste or in aqueous extracts with different soil/water ratios, and spectrometric analysis are em-

ployed for characterization of soil salinity [13]. 

T a b l e  1

EC values for soil salinity classes 

Soil salinity class Conductivity of the Saturation ex-

traction (dS/m) 

Effect on crop plant 

Non saline 2‒4 Salinity effects negligible 

Slightly saline 4‒8 Yields of sensitive crops may be restricted 

Moderate saline 8‒12 Only tolerant crops yield satisfactorily 

Strong saline 12‒16 
Only a few very tolerant crops yield 

satisfactorily 

Very Strong saline >16
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Saline areas in the world 

Global scarcity of water resources, ecological pollution and enlarged salinization of soil and water be-

came a noticeable problem at the beginning of the 21st century. But numerous environmental stresses, like 

high temperatures, excessive winds, flood, drought, and soil salinity have predominately disturbed the yield 

and cultivation of important agricultural crops [14]. Amongst these, salinity is not only the major environ-

mental factor that limits plant growth and productivity but also become a worldwide enigma [15]. 

It is estimated that there are about 5.0 billion hectares of total agricultural land area in the world, this 

accounted for 37 percent of the total land on earth, and nearly 1.5 billion hectares of this total agricultural 

area (11% of total land) is now arable land used for stable farming of the crops. Munns and Tester (2008) 

reported that 800 million hectares of land are affected by the salinity problem [16]. Whereas Wang et 

al. (2011) reported that this figure will reach up to 950 million hectares in 2011 [17]. Based on the latest re-

port about one billion hectares of land, accounting for 10% of the world's arable land and can exceed up to 

50% of the world's arable land in the year 2015. These reports clearly indicate that the saline areas are in-

creasing rapidly. This problem is widely distributed in over 100 countries in the world [18] and is worsening 

in countries like America, China, Hungary, and Australia, and it will become more severe in North Africa, 

East Africa, the Middle East, East Asia, and South Asia. There are about 320 million hectares of saline af-

fected land in the Asian continent, accounting for about 1/3 of the world. China has more population with 

less land, moreover, saline land distribution is very wide [19]. There are 100 million hectares of arable land 

in China, amongst them 6.66 million hectares were polluted with different degrees of salinization [20]. 

Causes of soil salinization 

The land salinization reason can be divided into two 1) Primary (natural) and 2) Secondary (anthropo-

genic) [21]. It has many reasons to increase naturally: 

1. Various rock such as intermediate igneous rocks; basic igneous rocks and undifferentiated volcanic 

rocks have affected soil salinity. Because when rock salt is freed from the substrate, the upper soil gets pre-

cipitated by capillary action and cause soil salinization [22]. 

2. Climatic changes like annual rainfall, evaporation, temperature, humidity and pH also influenced soil 

salinity. 

3. Soil pore and other physical structures also effect the migration and accumulation of the salinity in 

the land soil. 

4. Entry of seawater during cyclones in coastal areas. 

5. Vegetation coverage. 

6. Seasonal and gradient influence of major projects on the occurrence of soil salinization. 

7. A significant proportion of the recently cultivated agricultural land has become saline because of the 

use of poor-quality water for irrigation and improper drainage in a canal-irrigated wetland agro-

ecosystems [23, 24]. These serious consequences represent the decreasing of productive agricultural land for 

farming [25]. 

Mapping and monitoring of soil salinity areas 

The necessity of mapping soil salinity 

Population pressure is increasing in the world and about 20% of the world’s total cultivated area and 

nearly 50% of the irrigated croplands are heavily affected by soil salinity [26]. In the near future, more dry 

lands will be put into agriculture for crop production. Therefore, it is important to monitor and map saline 

areas, at an early stage to enact an effective soil reclamation program that helps to lessen or prevent the fu-

ture increase in soil salinity [27, 28]. 

The technology used for soil salinity mapping 

Scientists monitored or map the soil salinity by taking Remote Sensing Data through salt features (white 

salt crusts) that are visible at the soil surface, and the presence of halophytic plants. These methods are 

known as soil reflectance indicators and vegetation reflectance indicators [9]. Remote sensing technology 

helps to get information about objects or areas from a long distance by aircraft or satellites 

(http://oceanservice.noaa.gov/facts/remotesensing.html). It has been used in different research fields such as 

archeological research [29], ecosystem services [30], medical sciences [31], environmental research [32], 

abiotic stress studies [33]. Advantages of using remote sensing technology include providing the multispec-

tral images, saving time, wide-coverage, (satellite remote sensing provides the only source when data is re-

http://oceanservice.noaa.gov/facts/remotesensing.html
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quired over large areas or regions), faster than ground methods, and facilitating long-term monitoring [9]. 

However, in soil salinity studies, only considering soil reflectance may not be enough to measure variation in 

soil salinity, because, the spatial variability of soil salinity over the landscape is highly sensitive and is con-

trolled by a variety of factors. These factors include: 

1. Soil factors (surface roughness, moisture, parent material, permeability, water table depth, groundwa-

ter quality, and topography); 

2. Management factors (irrigation and drainage); 

3. Climatic factors include (rainfall and humidity) [8, 34]. Therefore, it is beneficial to use vegetation 

reflectance as an indirect indicator for mapping soil salinity, because it can provide a spatial overview of sa-

linity distribution and avoid limitations associated with the direct use of soil reflectance [35]. 

The use of vegetation reflectance as an indirect indicator  

Vegetation reflectance has been used in numerous fields, including ozone [36, 37], soil contamination 

[38‒41], pathogens, senescence, dehydration, natural gas and metal contamination.  

Indicator plant species have been generally used together with physical and chemical indicators to de-

termine soil salinity [7], but not all can be good remote sensing indicators of soil salinity [9]. Plant communi-

ties were better indicators soil salinity than individual species, the dominant halophytic communities in sa-

line areas. For examples, Salicornia europaea community and Aster tripolium community were present at 

salinity over 20 mS/cm, Triglochin maritima community over 12 mS/cm, Puccinellia distans-Salicornia eu-

ropaea-Spergularia marina community over 8 mS/cm and Glaux maritima-Potentilla anserina-Agrostis sto-

lonifera community over 2 mS/cm [42]. 

Additionally, the performance of some salt tolerance crops such as alfalfa, barley, and cotton can pro-

vide the severity of soil salinity. Alfalfa is an ideal natural resource and model plant for remediation of con-

taminated soils, offering a variety of elite characteristics, including a highly productive biomass, drought tol-

erance, a fast-growing and prosperous root system, and availability in large amounts over several months of 

the year [43]. Cotton is basically cultivated on irrigated land, so it is considered an ideal indirect indicator for 

soil salinity and has been used as salinity indicators in a variety of studies [9, 44]. For example, Zhang et al 

(2011) reported that the vegetation cover of Yellow River Delta (YRD) of China, includes some grass spe-

cies: suaeda (Suaeda glauca), Suaeda salsa, aeluropus (Aeluro- pus sinensis), cogon grass (Imperata cylin-

drica), reed (Phragmites), and a shrub species: saltcedar (Tamarix chinensis), crops planted in the YRD are 

salt-tolerant varieties, including cotton (G. hirsutum) and corn (Zea mays). The dominant species in the YRD 

could represent typical halophytic plants and salt-tolerant crops because they are also common in other saline 

areas [35]. 

Improvement measures for saline soil tolerance 

To improve saline soils, it was attempted three main measures:  

1. Chemical improvement measures. Liu et al. (2015) did experiment to study the effects of newly-

developed ameliorant, gypsum and cow in the coastal saline-alkali soil of north Jiangsu Province [45]. The 

authors measured the plant (Salicornia europea L.) growth and ion concentration in stems and roots. The 

results of this study presented that the three ameliorants, including cow dung, gypsum, new ameliorant and 

their combinations developed soil chemical and physical contents and moreover confirmed to improve the 

total plant height and stem diameter in the following order of manure usage: cow dung > gypsum > new 

ameliorant. 

2. Biological and ecological measures. Microorganisms with the following characteristics like salt 

tolerant with improved genetic variability, synthesizing compatible solutes, producing plant growth promot-

ing hormones, bio-control potential, can successfully interacts with the crop plants to improve the saline soil 

quality [14]. In the microbiological investigations of saline soils, great attention has been paid to the halo-

philic, osmotolerant, and alkalo tolerant microorganisms [46]. For example, Salt-tolerant plant growth-

promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline 

soil, it is beneficial bacteria that live in the plant root zone [47]. Plants treated with rhizobacteria have better 

root and shoot growth, nutrient uptake, hydration, chlorophyll content, tolerance to diseases, higher K+ ion 

concentration and, in turn, a higher K+/Na+ ratio that favors salt tolerance [48]. 

3. Introduction of salt tolerance plants. Increased salt tolerance of perennial species used for fodder 

or fuel production is an important and natural method for controlling the spread of secondary salinity. How-

ever, different crop species have different threshold tolerance ECe and yield reduction rate [24] (Table 2). If 

salt levels are 0 to 2 dS/m, yield of the most crops are not significantly reduced; a level of 2 to 4 dS/m affects 
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some crops; whereas most of the crops are significantly affected when salt levels ranges from 4 to 5 dS/m 

[49]. ECes around 7.7, 12, and 17 dS m−1 are classified into low, moderate and high salinity level, respec-

tively. Cotton is one of the advantageous salt tolerant crop with a threshold salinity level of 7.7 dS/m−1 

(equal to 0.5% or 77 mmol/L NaCl), but, the germination of cottonseed and emergence of seedling is gener-

ally delayed and reduced by high salinity levels [50]. At present, China has the largest saline soil area in the 

world used for cotton farming. According to the incomplete statistics, the plant cotton saline area is about 1.7 

billion hm2 [17]. 

T a b l e  2  

Many important crops are susceptible to soil salinity 

Crop 

Threshold salinity Decrease in yield 

dS m-1 
Slope % per 

dS m-1 

Bean (Phaseolus vulgaris L.) 

Eggplant (Solanum melongena L.)   

Onion (Allium cepa L.) 

Pepper (Capsicum annuum L.) 

1.0 

1.1 

1.2 

1.5 

19.0 

6.9 

16.0 

14.0 

Corn (Zea mays L.) 1.7 12.0 

Sugarcane (Saccharum officinarum L.) 1.7 5.9 

Potato (Solanum tuberosum L.) 1.7 12.0 

Cabbage (Brassica oleracea var. capitata L.) 1.8 9.7 

Tomato (Lycopersicon esculentum Mill.) 2.5 9.9 

Rice, paddy (Oryza sativa L.) 3.0 12.0 

Peanut (Arachis hypogaea L.) 3.2 29.0 

Soybean（Glycine max L.)  

Wheat (Triticum aestivum L.) 

5.0 

6.0 

20.0 

7.1 

Sugar beet (Beta vulgaris L.) 

Cotton (Gossypium hirsutum L.) 

7.0 

7.7 

5.9 

5.2 

Barley (Hordeum vulgare L.) 8.0 5.0 

 

Effect of salinity stress on plant and plant salinity response 

Effect of salinity stress on plant 

Under salinity stress conditions, soluble salts are accumulated in the root zone of plants [49], than caus-

es osmotic and ionic stress [51]. We can see the two-phase model relating the osmotic and ionic effects of 

salt stress below (Fig. 1).  

 

Figure 1. Scheme of the two-phase growth response to salinity [53] 
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In the first, osmotic effect starts rapidly after the salt concentrations especially Na and Cl level increases 

more than a threshold level and there is decrease in K, Ca, NO3 and Pi concentrations in the root zone. Os-

motic stress resulted in decrease water availability for the plant cells which leads to a decrease water uptake 

with cellular dehydration. Subsequently the rate of shoot growth falls significantly, moreover with the de-

crease rate of growing leaves expansion, slower rate of leaves emergence and slow lateral buds’ development 

with fewer branches or lateral shoots formation. This non-specific effect is common to all dehydrative stress-

es including salinity, drought, and low temperatures and with some types of mechanical plant wounding [22]. 

The ion-specific effect is a secondary phase of the plant response to salinity, whereas higher levels of salt get 

accumulated in the older leave parts and resulted in cell death. Hence, with the decrease in new leave pro-

duction due to more leave necrosis, the photosynthetic rate of plants decreased having lower levels of carbo-

hydrates, which is required for new leave production [52, 53]. 

Plant salinity response mechanism  

Plants differ in their ability to cope with these adverse factors. Depending on growth performance of 

these organisms in saline habitats, plants can be divided into two groups: salt-sensitive “glycophytes” and 

salt-tolerant “halophytes” [54]. Halophytes can complete their whole life cycle at salt concentrations higher 

than 200 mM NaCl [22], even can survive salinity in 300‒400 mM extra salt concentration [52]. Some halo-

phytic Amaranthaceae (Salicornioideae, Chenopodioideae and Suaedoideae) yield is significantly negatively 

affected at low salt concentrations, because their growth rate is stimulated at a salinity range of 150–300 mM 

NaCl [55]. Glycophytes, including most crop plants not only reduce their yield in high salt concentration, but 

also are killed by 100‒200 mM NaCl [52].  

Generally, three major factors determine the tolerance of plants to extreme environmental conditions 

(abiotic stresses) at molecular level: 

1. Genomic level: Plants have differences at genome structure level, it is suggested that salt tolerant 

plants may have unique stress-responsive genes, which sensitive plants do not have. 

2. Transcriptomic level: Tolerant plants have altered gene expression regulation features of stress-

responsive genes than salt sensitive plants. Tolerant plants may enhance constitutive expression of several 

salinity-responsive transcripts. Enhanced constitutive expression of several salinity-responsive transcripts 

(SOS1, SOD, P5CS, GS, INPS, cytochrome P450, heat shock protein). 

3. Proteomic level: Plants has differences in protein structure and activity level, thus proteins involved 

in the stress responses revealed an altered activity in tolerant plant than in susceptible ones because of the 

(differences in protein structure and activity level) [56]. 

Plants developed a combination of biochemical and molecular mechanisms to cope with salt stress situ-

ation. The specific biochemical strategy undertaken by plant is: (1) ion regulation and compartmentalization, 

(2) induced biosynthesis of compatible solutes, (3) induction of antioxidant enzymes, which are illustrated in 

figure further down (Fig. 2) [57]. 

Ion regulation and compartmentalization 

Na+ enters roots passively, through voltage-independent nonselective cation channels and possibly 

through other Na+ transporters such as some members of the high-affinity K+ transporter (HKT) family [16] 

and may also block the K ― specific transporters of root cells under salinity [24]. For plant development 

Ionic uptake and compartmentalization are key factors, most importantly during salt stress because of dis-

turbance of ion homeostasis. Glycophyte or halophyte cannot tolerate higher salt in the cytoplasm, thus they 

restrict the excess salts in the vacuole or compartmentalize the ions in other plant tissues to carry out normal 

metabolic functions. Glycophytes also inhibit the sodium uptake or partition sodium that served as storage 

compartments and then die. Plants maintained low levels of cytosolic sodium levels by regulation of potassi-

um and sodium transporters and H+ pumps that generate the driving force for transport of ions across the 

membranes [51]. To cope salinity, drought, cold, acid stress, anoxia, and excess heavy metals stress in the 

soil, survival of the plant cells solely depends on the maintenance or adjustment of the V-ATPase activity. 

Na+ stress is well known to cause Ca++ depletion in the extracellular space and the outer surface of the 

plasma membrane, whereas increased extracellular Ca++ also help to up regulates the cytosolic free calcium 

levels. 
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Figure 2. Plant response mechanism to salt stress (Illustration created on biorender.com platform) 

Induced biosynthesis of compatible solutes 

The accumulation of compatible solutes is often regarded as a basic strategy for the protection and sur-

vival of plants under abiotic stress conditions. These compatible solutes include mainly proline, glycine beta-

ine (GB), sugars, and polyols [58‒61]. Multiple functions for these compounds have been suggested. The 

conventional role of these compatible solutes is to maintain cell osmotic adjustment and reduce the water 

potential in high salinity condition [62]; they are also suggested to act as low- molecular-weight chaperones, 

stabilizing the photosystem II complex, protecting the structure of enzyme, proteins and inducing damages to 

cellular component, maintaining membrane integrity and scavenging ROS [58].  

Induction of antioxidant enzymes  

Salt, drought, heat and oxidative stress are related to an enhanced production of reactive oxygen species 

(ROS) such as O2, H2O2, and OH [63]. These ROS can cause damage to the cellular membranes, function 

of photosynthetic apparatus, activities of various enzymes, and peroxidation of lipids. Salt-tolerant plants, 

besides being able to regulate the ion and water movements, should also have better antioxidation strategies 

to scavenge these toxic compounds [64]. These antioxidants (ROS scavengers) include enzymes such as 

catalase, superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase; non-enzyme 

molecules such as ascorbate, glutathione, carotenoids, and anthocyanins; compounds, such as osmolytes, 

proteins (e.g. peroxiredoxin) and amphiphilic molecules (e.g. tocopherol) [63, 65]. The antioxidants have 

been found to be key determinants of salt tolerance in different crops. For example, in order to determine 

whether cell membrane permeability, activities of antioxidant enzymes such as SOD, CAT and POX and 

K+ vs. Na+ selectivity criteria for salt tolerance in canola (Brassica napus L.) four lines, Dunkled, CON-III, 

Rainbow and Cyclone. RMP was found to be associated with the activities of antioxidant enzymes, SOD, 

CAT and POX and the lines differ significantly for shoot K+/Na+ ratios and shoot K+ vs. Na+ selectivity, 

but these traits prove not good indicators for salt tolerance in the canola. Overall relative cell membrane 

permeability and activities of antioxidant enzymes (SOD, CAT and POX) proved to be very effective in dis-

criminating the canola cultivars for salt tolerance [66, 67] reported that the activities of antioxidant enzymes 

and lipid peroxidation were associated with the dry mass production and consequently with the salt tolerance 

of the three maize cultivars [67]. Where in another study superoxide dismutase (SOD) activity increased sig-

nificantly in both genotypes, and increases in amounts of transcript were observed for OsSOD3Cu/Zn and 

OsSODA1-Mn in the tolerant genotype and for OsSOD4-Cu/Zn, OsSOD3-Cu/Zn, OsSODCc1-Cu/Zn, Os-

SOD-Fe, and OsSODA1-Mn in the sensitive genotype [68].  
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Д. Түсіпқан, М.Б. Рамазанова, Ш.А. Манабаева 

Топырақтың тұздылығы және өсімдіктердің тұзға төзімділігі 

Су ресурстарының жаһандық тапшылығы, қоршаған ортаның ластануы және топырақ пен судың 

тұздануының жоғарылауы ХХІ ғасырдың маңызды мәселесінің бірі. Өнеркәсіптік және ауылшару-

ашылық жұмыстарынан туындаған топырақтың ластануы адам денсаулығы мен экожүйеге үлкен 

қауіп төндіретін экологиялық мәселе. Мақалада біріншіден, топырақтың тұздану сипаттамалары және 

тұздану көрсеткіштері ұсынылған. Екіншіден, әлемнің тұзды аймақтарына және топырақтың тұздану 

себептеріне назар аударылған. Үшіншіден, топырақтың тұздану аймақтарын картаға түсіру және 

бақылау мен топырақтың тұздануға төзімділігін арттыру шаралары қарастырылған. Төртіншіден, 

тұзданудан туындаған күйзелістің өсімдіктерге әсері және өсімдіктердің тұздануға реакциясы талқы-

ланған. Мақаланың мақсаты — топырақтың тұздануына жан-жақты шолу жасау және болашақ зертте-

улер үшін негізгі ақпаратты ұсыну.  

Кілт сөздер: өсімдіктер, абиотикалық факторлар, күйзеліс, топырақтың сортаңдануы, тұзға төзімділік, 

ластану, тұздану, иондардың ретелуі. 

 

Д. Түсіпқан, М.Б. Рамазанова, Ш.А. Манабаева 

Засоленность почвы и солеустойчивость растений 

Глобальная нехватка водных ресурсов, экологическое загрязнение и возросшее засоление почвы и во-

ды стали заметной проблемой начала XXI века. Загрязнение почв, вызванное промышленной и сель-

скохозяйственной деятельностью, представляет собой экологическую проблему, представляющую се-

рьезную угрозу здоровью человека и экосистемам. В обзоре представлены, прежде всего, характери-

стики засоления почв и показатели засоления. Во-вторых, мы сосредоточили внимание на засоленных 

территориях мира и причинах засоления почв. В-третьих, рассмотрели картирование, мониторинг зон 
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засоления почв и меры по повышению устойчивости почв к засолению. В-четвертых, обсуждалось 

влияние стресса, вызванного засолением, на растения и реакцию растений на засоление. Целью этого 

обзора является предоставление всестороннего обзора засоления почв и фундаментальной информа-

ции для будущих исследований.  

Ключевые слова: растения, абиотические факторы, стресс, засоление почвы, солеустойчивость, за-

грязнение, засоление, регуляция ионов. 
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